Using and extending itemsets in data mining: query approximation, dense itemsets, and tiles
نویسنده
چکیده
Frequent itemsets are one of the best known concepts in data mining, and there is active research in itemset mining algorithms. An itemset is frequent in a database if its items co-occur in sufficiently many records. This thesis addresses two questions related to frequent itemsets. The first question is raised by a method for approximating logical queries by an inclusion-exclusion sum truncated to the terms corresponding to the frequent itemsets: how good are the approximations thereby obtained? The answer is twofold: in theory, the worst-case bound for the algorithm is very large, and a construction is given that shows the bound to be tight; but in practice, the approximations tend to be much closer to the correct answer than in the worst case. While some other algorithms based on frequent itemsets yield even better approximations, they are not as widely applicable. The second question concerns extending the definition of frequent itemsets to relax the requirement of perfect co-occurrence: highly correlated items may form an interesting set, even if they never co-occur in a single record. The problem is to formalize this idea in a way that still admits efficient mining algorithms. Two different approaches are used. First, dense itemsets are defined in a manner similar to the usual frequent itemsets and can be found using a modification of the original itemset mining algorithm. Second, tiles are defined in a different way so as to form a model for the whole data, unlike frequent and dense itemsets. A heuristic algorithm based on spectral properties of the data is given and some of its properties are explored.
منابع مشابه
Data sanitization in association rule mining based on impact factor
Data sanitization is a process that is used to promote the sharing of transactional databases among organizations and businesses, it alleviates concerns for individuals and organizations regarding the disclosure of sensitive patterns. It transforms the source database into a released database so that counterparts cannot discover the sensitive patterns and so data confidentiality is preserved ag...
متن کاملA New Algorithm for High Average-utility Itemset Mining
High utility itemset mining (HUIM) is a new emerging field in data mining which has gained growing interest due to its various applications. The goal of this problem is to discover all itemsets whose utility exceeds minimum threshold. The basic HUIM problem does not consider length of itemsets in its utility measurement and utility values tend to become higher for itemsets containing more items...
متن کاملMINING FUZZY TEMPORAL ITEMSETS WITHIN VARIOUS TIME INTERVALS IN QUANTITATIVE DATASETS
This research aims at proposing a new method for discovering frequent temporal itemsets in continuous subsets of a dataset with quantitative transactions. It is important to note that although these temporal itemsets may have relatively high textit{support} or occurrence within particular time intervals, they do not necessarily get similar textit{support} across the whole dataset, which makes i...
متن کاملروشی کارا برای کاوش مجموعه اقلام پرتکرار در تحلیل دادههای سبد خرید
Discovery of hidden and valuable knowledge from large data warehouses is an important research area and has attracted the attention of many researchers in recent years. Most of Association Rule Mining (ARM) algorithms start by searching for frequent itemsets by scanning the whole database repeatedly and enumerating the occurrences of each candidate itemset. In data mining problems, the size of ...
متن کاملDELAY-CFIM: A Sliding Window Based Method on Mining Closed Frequent Itemsets over High-Speed Data Streams
Closed frequent itemset mining plays an essential role in data stream mining. It could be used in business decisions, basket analysis, etc. Most methods for mining closed frequent itemsets store the streamlined information in compact data structure when data is generated. Whenever a query is submitted, it outputs all closed frequent itemsets. However, the online processing of existing approache...
متن کامل